Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
3.
Nat Commun ; 13(1): 1536, 2022 03 22.
Article in English | MEDLINE | ID: covidwho-1758235

ABSTRACT

Therapeutic mRNAs and vaccines are being developed for a broad range of human diseases, including COVID-19. However, their optimization is hindered by mRNA instability and inefficient protein expression. Here, we describe design principles that overcome these barriers. We develop an RNA sequencing-based platform called PERSIST-seq to systematically delineate in-cell mRNA stability, ribosome load, as well as in-solution stability of a library of diverse mRNAs. We find that, surprisingly, in-cell stability is a greater driver of protein output than high ribosome load. We further introduce a method called In-line-seq, applied to thousands of diverse RNAs, that reveals sequence and structure-based rules for mitigating hydrolytic degradation. Our findings show that highly structured "superfolder" mRNAs can be designed to improve both stability and expression with further enhancement through pseudouridine nucleoside modification. Together, our study demonstrates simultaneous improvement of mRNA stability and protein expression and provides a computational-experimental platform for the enhancement of mRNA medicines.


Subject(s)
COVID-19 , RNA , COVID-19/therapy , Humans , Pseudouridine/metabolism , RNA Stability/genetics , RNA, Messenger/metabolism
4.
Hum Vaccin Immunother ; 17(3): 644-653, 2021 03 04.
Article in English | MEDLINE | ID: covidwho-894514

ABSTRACT

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still spreading globally. The scientific community is attempting to procure an effective treatment and prevention strategy for COVID-19. A rising number of vaccines for COVID-19 are being developed at an unprecedented speed. Development platforms include traditional inactivated or live attenuated virus vaccines, DNA or RNA vaccines, recombinant viral vector vaccines, and protein or peptide subunit vaccines. There are 23 vaccines in the clinical evaluation stage and at least 140 candidate vaccines in preclinical evaluation. In this review, we describe research regarding basic knowledge on the virus, updates on the animal models, current landscape of vaccines in clinical evaluation and updated research results on vaccine development. Safe and effective COVID-19 vaccines require further investigation.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Animals , Humans , Pandemics/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL